Skip to content

Research to Industry (R2I) event review and presentations

July 26, 2013

The second iteration of the Research to Industry event, earlier in Loughborough, was a success.  Attendants can now download the presentations from the IMAPS-UK website’s download area.

If you missed it this year, here is a summary of the vent, courtesy of John Ling.  A more complete version, with pictures, can be found on our website.

The purpose of the rather full but very pertinent one‐day conference was to make it possible for an understanding of the level of research in our universities to be available to as many people as possible, especially those from industry.

Organised  by  the  ESPKTN,  iMAPS  UK,  IEEE  and  IeMRC.  There  were  four  sessions  to  this  conference,  in  each  one  there  was  a  keynote speaker,  followed  by  a  handful  of  speakers  who  provided  a  snapshot  of  the  work being done at their particular university.

Christophe Blanc from Yole Finance was the first key‐note speaker, with COWIN as his  topic.  COWIN  aims to  fill  the  gap  between  technology  and  the market,  with  the  main  objective  being  to  build relationships  between  industrial  partners,  transfer  IP, and  oversee  the  launch  and  growth  of  start‐up companies.  Much  of  their  work  is  to  do  with fitting the research projects with the market, and under 7 portfolios there are now  500 industrial partners.  There  are  at  the  moment  20  start‐up companies exploiting FP6/FP7 research projects benefiting from COWIN support.  In the  microelectronics  field  one  is  called  Bi‐Flow,  which  is a microfluidic  system,  and another  is  LabonFoil,  a  MEMS  system,  both  of  which  have  found  successful collaboration.    There  are  130  others,  and  no  less  than  20  venture  companies  are working  with  COWIN,  an  acronym  for  Coordination,  Optimising,  Winning  new markets, Innovation support and Net value creation. Creative, yes.

David Harrison of Brunel University led the cohort of speakers with an introduction to Power Weave, which is all about a fabric, a system designed to generate and store energy within a totally fibrous matrix. Using photovoltaic fibres, and energy storage fibres  based  on  supercapacitors,  these  are  woven  together  into  a  textile. The project, just starting its second year, has already produced a coaxial single fibre supercapacitor for energy storage, and a woven supercapacitor.

Dr. Lijie Li from Swansea University spoke about a new low cost resistance switching device. Their aim is to produce a process that can produce highly reliable devices, and they would like to work with a PCB company, to speed up adoption of their novel technology .  They  are  looking  for  partners  to  be  involved  in  R&D  and  early  stage  research funding is also sought.

Dr. Nutapong Sornjit from The University of Leeds is leading a project on 3D  microwave  and  millimetre  waveguides;  the  latter  are  extremely  low  loss.  They are  fabricating  prototype  3D  structures,  and  he explained  how  they  make  the  LTCC  in‐house  prototyping  process  more  stable  and repeatable. They are searching for industrial partners through TSB and EU projects, especially ones working in robotics and MEMS.

Dr.  David  Hutt  of  Loughborough  University reported  on copper  filled  adhesive  pastes  for  printed  electronics  applications.   The direct printing of circuits is growing fast as a process, but needs low costs materials, and here the copper filled media has a role to play. Copper has a non‐conductive oxide which limits performance, so his department has replaced the copper oxide with a protective coating,  which  disappears  during  thermal  curing,  leaving  a  pure copper conductive path.  Whilst the conductive material is still wet, components can be placed and the assembled whole can be cured at 150°C in argon. They would like to work in collaboration with adhesive suppliers, ink formulators, paste formulation experts and end users in the printed electronics industry.

The  University  of  Warwick  has  Dr.  Gunwant  Dhadyalla  working  on  electronics  in transport  systems.  So  much  of  air  transportation  in  particular  relies  upon  complex wiring,  with  inherent  weight  problems,  and  his  attention  is  to  look  at  the  wireless concept as a replacement. Wi‐Fli, possibly?

Xiaoxin  Zhu  of  the  University  of  Greenwich  is  perfecting  computer  simulation  of electro‐migration.  This  causes  void  generation  or  open  circuits,  and  electro‐migration of solder joints will become a limiting factor, so they are researching a new structure  that  can  increase  the  lifetime  of  a  solder  pads  by  a  factor  of  5‐7.  The research is at TRL 2‐3 presently.

Session 2 was kicked off by Dr. John‐Paul Rooney, who is a cheerful patent attorney with  Withers  Rogers.  He  came  along  to  talk  about  patenting,  or  commercialising research.  Patents mean a return on investment, a means of protecting your IP.  There  are  four  basic  methods of  making  money  out  of  patents,  of  which  two  are  more suitable for academic research.   In the field of semi‐conductors, where he has considerable experience, he highlighted ARM  as  a  company  who  have  an  excellent  licensing  system. He gave more examples of where there has been successful application of IP, one of
them at the University of Salford, who have been working in the world of automotive suspension  units,  and  they  have  now  linked  with  a  large  German  company manufacturing components in this area, which has led to further research into other applications, the costs of which are borne by patent payments.

Dr. Andrew Ballantyne at the University of Leicester is pursuing a fluxless soldering process for the electronics industry, and runs two IeMRC funded projects looking at the  fundamental  ionic  liquid  based  chemistry  behind  it. Conventional fluxes are expensive, and malodorous. However, deep eutectic  solvents  have  high  oxide  solubility,  are  environmentally
benign  components,  and  potentially  lower  cost.  His  project  is working with organic salt with halide anions and various complexing agents  to  make  an  anionic  complex.  This  remains  liquid  at  room temperature,  and  is  efficacious  at  much  lower  cost.  The  project aims  to  pursue  a  strategy  to  exploitation,  and  they  are  already working with PCB suppliers and related associations, such as Merlin, the Smart Group, and EIPC.

Dr Vaidhyanathan of Loughborough University is looking at the use of microwaves to  process  electronic  ceramics.  Here  they  are  used  to  sinter  ZnO  varistors,  and electrical properties are improved thereby. Processing nano MLVs with microwaves leads  to  a  significant  cost  reduction,  and  it  has  been  proven  that  microwaves  can lead to a lower temperature for sintering, whilst retaining the nanofeatures.  Scaling up the process is the next step.

Stewart  Smith  from  The  University  of  Edinburgh  has  been  working  on  the integration  of  magnetic  components  with  silicon  IC  technologies.  Integrated inductors  have  many  applications,  and  the  target  market  is  power  supply  ICs.    A spiral  inductor  has  high  aspect  ratio  coils  with  a  nickel  iron  alloy,  with  higher induction,  on  a  copper  seed  layer,  and  they  are  developing  new  techniques  for characterising magnetic hysteresis.

Dr  Darren  Cadman  spoke  on  how  The  University  of Loughborough  is  working  with  Heriot‐Watt  University  in
Scotland  on  a  bid  for  an  embedded  intelligence  training centre.  Embedded  intelligence  means  ‘machines  which  talk’.
They are hoping to set up a new centre for doctoral training in this  subject,  with  £6  million  requested  from  EPSRC,  and
another  £1  million  coming  in  from  industry.  This  could commence in September next year and will accommodate 10‐
15  students  per  annum  passing  through  a  4‐year  study programme.  He  hopes  that  industry  can  help  by  supplying
equipment or giving access to equipment, other facilities, placements, etc. The end result with be highly trained and highly specialised engineers providing solutions to problems.

A  duet  from  Cambridge  University  comprising  Ms  Heba  Bevan  and  Mr  Philip Keenan  had  Smart  Infrastructure  Opportunities  as  a  title  of  their  presentation,  but much  of  their  life  seems  to  be  spent  underground  in  tunnels  under  London  where they are placing and monitoring sensors measuring everything that is going on down there  in  terms  of  vision,  sound,  movement,  air  quality.  These  wireless  sensors  are being  installed  in  the  tunnels  being  created  for  Crossrail,  and  also  in  the  London Underground.

Professor  Guglielmo  Aglietti  from  The  University  of  Surrey  is  working  on  the  structural analysis  of  electronic  assemblies.  Testing  assemblies  in  harsh  vibration environments is old hat, and he is looking at a new modelling system to measure the response from assemblies undergoing shock or vibration. And then see how they be made to survive.

Professor  Jeremy  Everard  of  the  University  of  York  is  working  on  low  noise oscillators, and a programme on RF and Microwave design is also being undertaken. His university has a very well‐equipped facility with 3D autocad design and a 4‐axis milling machine for prototype manufacture.

Professor  Martin  Goosey,  the  IeMRC’s  Technical  Director came on after lunch to provide the third keynote speech on
academic research to exploitation – the right path.
As  a  nation  we  have  a  successful  track  record  of innovations;  radar,  the  hovercraft,  the  jet  engine,  liquid
crystals  for  displays,  TV,  the  computer,  the  internet,  the light  bulb,  but  we  are  less  successful  in  exploiting  this
technology. There are many areas in the UK where we are world leaders, such as power electronics, but how do you capitalise on this?    One  example  of  a  success  is  where  the  IeMRC  supported  an ultrasonic  project  at  Coventry  University  on  ultrasonics,  The  TSB  supported  a technology  feasibility  study,  and  then  the  EC  supported  an  industrial implementation. Funding was maintained throughout. This ‘Susonence’ project was then  launched,  and  the  EIPC  and  six  other  partners  were  tasked  with  putting  this process into commercial acceptance. The industrial scale production plants will be in Prague, Paris and Cheshire.   There  are  various  schemes  at  the  UK  and  European  level  which  will  take  a  project from  basic  research  to  commercial  exploitation,  and  here  the  IeMRC  can  help enormously,  as  can  the  KTNs,  the  Technology  Strategy  Board  (TSB),  and  the European Commission.

Following  on  from  Martin  came  the  5‐minute  snapshot  specials, led  by  Roya  Ashayer‐Soltani from the National  Physical Laboratory, who is working on wearable electronics.  This sector will  be  worth  £1.8  billion  by  2015,  and  NPL  are  well  under  way with  this,  having  developed  a  wet  chemistry  additive  technique, with  100%  silver  encapsulation  of  fibres,  as  well  as  a  copper conductive  fabric.  The  applications  are  in  the  medical  and healthcare, sport and fitness, consumer electronics, and defence applications.

Mark  Sugden  from  Loughborough  University  cares  about  metal  nanoparticles.  His idea  is  to  replace  tin  palladium  catalyst  with  a  copper  catalyst,  aiming  to  improve adhesion with functionalised copper nanoparticles. This has been shown to activate the electroless plating process effectively, and oxide is not critcal to the process.
Dr  Xiao  Liu  from  UCL  illustrated  the  use  of  microelectronics  for  healthcare  and industrial applications. Integrated circuits such as System on Chip are ideal for use in the medical device market which is showing growth of 8% p.a. and will be worth £74 billion by 2018.  Such areas as bladder control, nerve stimulation for epilepsy, nerve stimulation  for  people  with  paraplegia,  as  well  as  temperature  sensors,  all  are important  areas.  The  three  key  applications  are  medical  devices,  microelectronic sensors, and opto‐electronics using silicon technology. Dr Liu ended by described the funding arrangements possible.

James Glover of De Montfort University had thermal profiling across devices as his theme,  and  he  described  how  to  measure  the  thermal  profile  of  a  GaN  heater structure using micro‐particle sensors.

Tin whiskers fascinate Mark Ashworth at Loughborough University, and he has an IeMRC  project  entitled  Whiskermit  to  run.  Tin  whiskers  are  again  widely  found  in electronics,  and  the  hard  bit  is  understanding  the  relationship  between  the  tin deposition process, and the process parameters. The process can be optimised, but it is not possible to eliminate them completely, and present conformal coatings do not provide adequate levels of protection against whisker growth. A new conformal coating  is  required,  which  he  is  endeavouring  to  establish  along  with  the  project’s partners.

Adam Lewis came up from The University of Southampton, where he is with a team of  people  working  on  carbon  nanotubes,  and  composite  surfaces  for  electrical contact interfaces.
Heading  the  final  session  of  the  day  was  someone  who  had  actually  started  up  a company, by name David Tester. His field was in semiconductors, he had a real mine of  experience  in  that  turbulent  field,  and  having  been  so involved he had some useful pointers.
What are you producing? Is it a product or is it a feature? What  is  the  size  of  the  market?  What  are  the  barriers  to
entry?  Who  are  the  founders?  What  is  the  business model?  How  will  you  fund  it?    Fundraising  is  hard  work.
Only  0.1%  of  pitches  to  a  venture  capitalist  get  funding. Wise  words  from  someone  who  has  been  down  the  path
to success. Then, he added, there’s people. There are only two types of employee, mercenary or missionary. But you need both, although they are motivated differently. Don’t avoid painful decisions.  Finally, strategy, tactics, planning and execution are the main points. The founder of AIR was never lost for an answer.

He  was  followed  in  short(s)  order  by  Jim  Clare  from  the  University  of  Greenwich who was concerned about predicting reliability in power electronics. There are three main  features  of  a  power  electronics  module,  where  failure  can  occur,  in  the wirebonding, the solder, and the ceramic. Developing the accurate physics of failure models is one of the challenges, and they are looking at the prognosis for reliability. Such modules are used in many applications, ones where failure can be disastrous. His work is vital.

Aleksandr Tabasnikov from the University of Edinburgh is working on materials and process and test designs for sensors for extreme conditions. Sensors have to sustain performance  in  harsh  environments,  and  have  to  cope  with  such  as  radiation, corrosion and temperature. Target markets are in aerospace, automotive and energy industries, also the HPHY market (High Pressure High Temperature). The structure is ready to be integrated with SiC electronics.

Rob  Seager  from  the  Wireless  Communications  Research  department  at Loughborough University is involved with a research programme on fabric antennae. They have developed antennae, with frequency selective surfaces, and can tune into wireless  signals  into  rooms,  buildings  etc.  The  fabric  samples  can  be  produced  by embroidery,  weaving,  and  screen  printing.  Fully  fabric  antennae  are  now  being produced.

Gavin  Williams  from  the  University  of  Sheffield  described  the  application  of  3D photolithography, and demonstrated how they can image onto non‐planer surfaces. Using a computer‐generated hologram with a laser light, they can image onto non‐planer surfaces, and the deposition of a resist using photoresist using a conformable means, all of which is perfect for mass production.

Dr Martin Foster also from University of Sheffield introduced us to the capabilities of the Electrical Machines and Drives Group there. They are involved with research into  energy  storage,  and  thermal  management,  power  electronic  devices,  power electronic energy conversions, and machines, and are working with a whole range of blue‐chip companies right around the world.

Finally, Mr Mohammed Samie from the Cranfield University spoke about designing FPGAs,  a  subject  of  great  importance  and  interest  to  the  many  microelectronic engineers amongst the audience.

To conclude the day Dr Chris Bailey from the IEEE awarded prizes for the presentations which reflected projects with good exploitation potential and  a  good  opportunity  of  being  commercialised.  The  winners  were  Dr.  Andrew Ballantyne, Dr Vaidhyanathan, Adam Lewis, and Nutapong Sornjit.

The winner of the iMAPS UK award of £1000 for the best project presentation was Dr. Xiao Liu of UCL, seen here with Mr. Peter Barnwell, iMAPS UK Treasurer.

Overall  this  was  an  excellent  event  which  gave  a  snapshot  of  the  wide  range  of electronics research that was being undertaken in UK universities and which should be of potential to the UK electronics industry.

Advertisements

From → Events, KTN

Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: